
Machine learning  is the science of giving 
computers the ability to learn from data, without being 
programmed explicitly. 

Deep neural networks  are inspired by the human 
brain, in the same way birds inspired us to build aircraft. 
They consist of layers of artificial neurons that are 
interconnected.

Deep neural networks power speech recognition 
systems (e.G. Apple siri), image recognition (e.G. Google 
images), learn to beat the world champion at the game 
of go by examining past games (deepmind), and will 

soon drive cars.
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Predicting flight routes with a Deep Neural Network in the 
operational Air Traffic Flow and Capacity Management system
Trajectory prediction is an essential component of Air Traffic Management (ATM) systems but is hampered by route uncertainty 
because of future air traffic controller clearances.  By augmenting traditional trajectory prediction logic with machine learning, 
a considerable improvement to accuracy can be achieved.

A deep neural network is trained on historical trajectories 
and a set of predictors. The neural network predicts the 
most likely route through the airspace, and has some ability 
to generalise to flights and conditions not seen before. 
Through iterative training on newly recorded data, the 
neural network can keep up with changes.

The neural network has been integrated into the operational 
Air Traffic Flow and Capacity Management system. Through 
the use of ‘what-if?’ trajectories, the new approach enhances 
existing capabilities rather than replacing them. This way, 
strengths are combined, paving the way for a gradual 
increase in the role of machine learning.

The problem to be solved

Flight trajectory prediction underpins much of the 
functionality of air traffic management systems, both in 
the tactical (air traffic control) and pre-tactical (air traffic 
flow & capacity management) phases of a flight. Systems 
in use today generally apply predefined rules and models 
to predict trajectories from available input data. Prediction 
logic is static and is grounded on domain knowledge of 
human experts and kinematic equations.   
  
Accuracy of the predicted trajectories is far from perfect, 
degrading performance of the ATM system.

A problematic element at Maastricht UAC (MUAC) is route 
uncertainty. Flights do not conform to the route in the filed 
flight plan because air traffic controllers give permission to 
fly shorter routes. The instructions originate from controllers 
in the local centre or colleagues in upstream centres. They 
are driven by a multitude of factors and may change over 
time.
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Figure 1 illustrates a 
typical case where the 

predicted trajectory 
deviates from the actual 

trajectory flown.  

The line in yellowshows the initial predicted trajectory of a 
flight from London to Rome. The initial prediction is derived 
from the flight plan filed by the pilot1 and is based entirely on 
fixed waypoints and routes. 

The line in blue shows the route actually flown by the aircraft. 
Only the part relevant to MUAC is depicted. The flight enters 
MUAC airspace to the south of the expected entry point and 
is allowed to fly a direct route to a waypoint in the south of 
Germany. 

The route deviation triggers several problems. Different 
sectors are crossed, which invalidates workload planning. The 
deviating route decreases the accuracy of predicted hotspots 
and medium term conflicts. And because crossing times 
and exit point are different, there is also an impact for the 
downstream control centre.

Being able to predict these deviations sufficiently in advance 
would bring great benefits to trajectory prediction. The factors 
that drive air traffic controller decisions are complex and 
intertwined. Moreover, they depend on working procedures 
and habits that may change over time. 

Because it is hard to set out concise rules describing actual 
routes flown, other approaches have been studied that build 
on recent advances with machine learning. The growing 
amount of recorded historical data is a key enabler. 

Historical data used for training the neural 
network

Given that the concept of machine-learned trajectories is 
fundamentally different from the existing approach, the new 
functionality is initially restricted to a subset of the traffic. 
This allows the supervisors and flow managers to grasp the  

trajectory differences and get acquainted with the concept 
of predicting trajectories from past data rather than from the 
route filed by the pilot. The selected traffic covers flights from 
the UK to European destinations to the south and southeast. 
The traffic amounts to about 10% of all MUAC traffic and has 
been selected on the basis that it suffers greatly from route 
deviations due to the presence of military airspace.

Flight and airspace data, including actual trajectories 
observed from radar tracks, was taken from the period 15 
December 2015 – 12 December 2017. The dataset includes 
more than 328,600 flights.

1 The route in yellow is extracted from the EFD messages received from the Network Manager.
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Predictors

Input to the neural network is: 
•	 Entry coordination point (NCOP), Exit Coordination 

point (XCOP), After-Boundary Exit point (BPXXCOP), 
Entry flight level (NFL), Requested flight level (RFL) 
and Exit flight level (XFL).

•	 Departure and destination airport
•	 Day of the week
•	 The time of the day interval the flight is expected to 

enter the AoR.  
•	 Reservation of military areas, expressed as grid cells. 

The grid cell mapping ensures that, in case geographic 
definitions of areas change, old training data still re-
flects useful information. The approach also supports 
the future use of weather data as a predictor. Knowl-
edge about the upper reserved flight level, in com-
bination with NFL, RFL and XFL, allows the neural 
network to learn patterns about which flights overfly 
certain areas.

The neural network

A feed-forward neural network with 3 hidden layers 
containing 170 units each is used. The last layer is connected 
to the readout layer with 8 units, corresponding to the 8 
coordinate values to be predicted.

A lot of work has been done selecting appropriate activation 
functions connecting the layers in the neural network, 
defining a good cost function, and choosing an effective 
optimizer.

The cost function expresses how ‘good’ the prediction is with 
respect to the actual flown route, and allows the optimizer to 
adapt the neural network weights and biases accordingly in 
the training phase. 

2,600,000 iterations of 1,000 random samples are used to 
train the neural network. The process takes multiple hours.
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The neural network is implemented in TensorFlow, a 

framework for deep learning open sourced by Google. 

TensorFlow was selected because of its powerful 

features and the possibility to integrate it in production 

systems by means of a C++ and Java API.

TensorFlow allows offloading operations to a GPU. 

Modern graphic cards are very suitable for highly 

parallelised computations.

The neural network is trained on a workstation with one 

of the fastest GPUs in the world. It has 3840 cores and 

24GB of memory. 

Validation of the neural network output

When predicting routes for flights not seen before by the 
neural network, 65% of the predicted routes are within 6 NM 
of the actual trajectory flown at any point. This result is much 
better than the current prediction (tagged ‘EFD’):

Max distance from 
flown route

EFD Neural Network

6 NM 10% 65%

15 NM 60% 94%

30 NM 85% 99%

The deviation metric and visualisations allow the  
performance of the neural network to be assessed, and are very 
useful for hyper-parameter tuning, but do not perfectly reflect 
real-life performance. The time element is not considered and 
correct knowledge about the predictors is assumed. In real 
life, the activation schedule of military areas may change up 
until the time of actual activation, the expected flight entry 
time could change due to departure noise, or the flight plan 
could be refiled with different parameters. Depending on 
look-ahead time, the quality of prediction will vary.  

At the end of the paper, values of the lateral deviation are 
presented at different look-ahead times during real-life 
operation. This metric reflects full integration of the neural 
network into the operational system.
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Integration of the neural network in the operational ATFCM system 
After training, the network is saved as a binary representation. The resulting file is less than 1MB in size 
and is transferred to the operational system as adaptation data. 

Because the new approach to trajectory prediction is fundamentally different from existing methods, and 
will bring many benefits in the pre-tactical phase when air traffic controller inputs are still unknown, the 
first operational implementation has been done in the ATM Flow & Capacity (ATFCM) system. An 
implementation in the Air Traffic Control system could follow the same architecture.  

The MUAC ATFCM system consists of (a.o.): 

• Flight Data Processing (FDP) system, responsible for trajectory prediction and sector sequence 
calculation in the planning phase, synchronized with the FDP system used in tactical operations. 
One of the items synchronized is military areas activation status and schedule 

• Integrated Flow Management Position (iFMP) system, responsible for calculating traffic load and 
complexity metrics (occupancy & entry counts, weighted occupancy counts, clusters) and 
evaluating different airspace configurations for a given manpower planning.  

The FDP system is fed with flight plan data for flights already under control and flights expected to enter 
the airspace in the next hours by means of EFD messages from the Network Manager.   
Based on the flight plan data received from the FDP system, and the consolidation of airspace reservation 
data (TSA) from several sources (e.g. LARA system), the iFMP application continuously calculates the 

Figure 2: prediction (red) for flight of figure 1 (blue) Figure 3: prediction for flight with active military areas 

Figure 3 visualises 
the filed, flown and 
predicted routes for 

a sample with active 
military areas.
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Figure 2 visualises the 
prediction for the flight 
used in Figure 1. The 
predicted trajectory is 
in red.
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Integration of the neural network into the 
operational ATFCM system

After training, the network is saved as a binary representation. 
The resulting file is less than 1MB in size and is transferred to 
the operational system as adaptation data.

Because the new approach to trajectory prediction is 
fundamentally different from existing methods, and will 
bring many benefits in the pre-tactical phase when air traffic 
controller inputs are still unknown, the first operational 
implementation concerned the ATM Flow & Capacity 
(ATFCM) system. 

The MUAC ATFCM system consists of (a.o.):

•	 Flight Data Processing (FDP) system, responsible 
for trajectory prediction and sector sequence cal-
culation in the planning phase, synchronized 
with the FDP system used in tactical operations.  

•	 Integrated Flow Management Position (iFMP) system, 
responsible for calculating traffic load and complex-
ity metrics (occupancy & entry counts, weighted oc-
cupancy counts, clusters) and evaluating different air-
space configurations for a given manpower schedule. 

The FDP system is fed with flight plan data for flights already 
being controlled and flights expected to enter the airspace in 
the next hours by means of EFD messages from the Network 
Manager.  

Based on the flight plan data received from the FDP system, 
and the consolidation of airspace reservation data (TSA) from 
several sources (e.g. the LARA system), the iFMP application 
continuously calculates the neural network predictors. 
If predictors change for a flight, iFMP invokes the neural  

network with a direct call to the TensorFlow Java API, which 
has been built into the iFMP application.

The predicted route is used to construct a ‘what if?’ request 
for the FDP system. The ‘what if?’ request triggers the FDP 
system to predict a 4D trajectory using its internal logic but 
constraining the route to the coordinates provided in the 
request. The ‘what if?’ trajectory is maintained in parallel to 
the original trajectory and both are provided to the iFMP 
system, displaying them as traffic load to users (supervisors 
and flow managers). 

Flow and capacity management functions on iFMP use the 
‘what if?’ trajectory, for instance to calculate more realistic 
sector occupancy values. If problems arise with the new 
prediction logic, iFMP can switch back to the original 
trajectories.  ‘What if?’ trajectories can be visualised and 
compared to the original trajectories.

The architecture offers the following benefits:

•	 Novel techniques can be used in a safety-related 
system. It is not necessary to change the core of 
the FDP system and at any point in time it is pos-
sible to switch back to unmodified trajectories. 

•	 The approach allows machine learning to be merged 
with legacy prediction logic, and supports a roadmap 
for gradually replacing other parts of the logic, e.g. 
predicting the climb or descent profile through ma-
chine learning, or predicting entry times.

Figure 4: integration of the neural network in the production system
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Figure 4: integration of the neural network in the production system 

Flow and capacity management functions on iFMP use the What-If trajectory, for instance to calculate 
more realistic sector occupancy values. If problems would arise with the new prediction logic, iFMP can 
switch back to the original trajectories.  What-If trajectories can be visualised and compared to the 
original trajectories. 

The architecture offers following benefits: 

• Novel techniques can be used in a system ranked safety related. It is not necessary to change the 
core of the FDP system and at any point in time, it is possible to switch back to unmodified 
trajectories. 

• The approach allows merging machine learning with legacy prediction logic, and supports a 
roadmap to gradually replace other parts of the logic. E.g. predicting the climb or descent profile 
by machine learning, or predicting entry times. 

 

Assessment of real life performance 
Figure 5 shows the accumulated lateral distances between the predicted trajectories and corresponding 
flown trajectories at different look-ahead times for the prediction. The same is done for the trajectories 
derived from filed flight plan data (label: ‘EFD’).  

The figure is for 7 October 2017, and includes 543 flights from the UK to the east and southeast of 
Europe. Each box plot covers a rolled-up 1h look-ahead period. Lateral deviation is measured in meters.  
The box plot denotes the 25%, 50% and 75% percentiles. The dotted tails are the outliers. Note that the 
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Assessment of real life performance

Figure 5 shows the accumulated lateral distances between 
the predicted trajectories and corresponding trajectories 
flown at different look-ahead times for the prediction. The 
same is done for the trajectories derived from filed flight plan 
data (label: ‘EFD’). 

The Figure relates to 19 January 2018, and includes 376 flights 
from the UK to the east and southeast of Europe. Each box 
plot covers a 30min look-ahead period. Lateral deviation is 
measured in meters. 

The box plot denotes the 25%, 50% and 75% percentiles. The 
dotted tails are the outliers. Note that the extreme outliers in 
look-ahead periods >4h are caused by refiled flight plans with 
different routes. They exist for both types of prediction.

Figure 6 depicts the consolidated statistics for all look-ahead 
periods up to 6 hours. The Figure relates to Monday 22 
January 2018 and covers 432 flights.

The Figure shows that for the vast majority of flights lateral 
error is reduced by half, with no negative impact on outliers.
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Better route prediction
•	 Machine learning of several 100.000’s 

of historical trajectories as they were 
flown

•	 Takes into account military areas, flight 
levels, time, day of week, airports, ...

•	 Reduces lateral error by half when 
compared to filed route

new route
prediction

old route
prediction

flown route
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How do neural networks work?
Suppose you have a number of inputs (say, three) and 
one output. In its simplest form, the output is  a * input1 
+ b * input2 + c * input3. The only thing you then need 
to do is determine the values of a, b and c.  If you have 
enough observations (i.e. combinations of inputs and 
corresponding output), you can ‘tune’ a, b and c to give 
the best fit.

Actually, if you have ever used the Excel functionality to 
determine a line-of-best-fit, this is exactly what you’ve 
been doing!

Neural networks do 
exactly the same, 
except that they 
can link the inputs 
to multiple layers 
(the ‘hidden units’) 
which in the end link 
to the output. The 
connections between 
one unit and another 
are represented by the 
weighting factors (a, b 

and c in our example above), which can be either positive 
(if one unit excites another) or negative (if one unit 
suppresses or reverses another). The higher the weight, 

the more influence one unit has on 
another. As you can see in the picture, the 
number of combinations and connections 
rapidly rises to formidable numbers as you 
increase the number of hidden units and the number of 
layers!

In addition, each neuron is followed by a so-called 
‘activation function’, which applies a non-linear operation 
to the output of the neuron. In this way any arbitrary 
relation between variables can be approximated by a 
neural network.  

In the training phase, the neural network is fed with inputs 
(in our case flight plans) and known outputs (in our case 
flown trajectories). It uses this data set to find the best fit 
for parameters a, b and c (and many more!). For this, it uses 
a cost function that expresses how ‘good’ the prediction is 
with respect to the actual route flown, and that allows the 
optimizer to adapt the neural network weights and biases 
accordingly in the training phase.

Then, in the application phase (i.e. during live operations) 
it receives the inputs (flight plans) and applies the 
weighting factors that it has determined in the learning 
phase to produce the output – the statistically most likely 
trajectory.


